
 

 Abstract –– The transformer design optimization (TDO) is a 
complex constrained mixed-integer non-linear programming 
problem with discontinuous objective function. This paper 
proposes an innovative method combining genetic algorithm 
(GA) and finite element method (FEM) for the solution of TDO 
problem. The main contributions of the proposed method are: 
(i) introduction of an innovative recursive GA with a novel 
external elitism strategy associated with variable crossover and 
mutation rates resulting in an improved GA, (ii) adoption of 
two particular finite element models of increased accuracy and 
high computational speed for the validation of the optimal 
design by computing the no-load loss and impedance, and (iii) 
combination of the innovative recursive GA with the two 
particular finite element models resulting in a proposed GA-
FEM model that finds the global optimum, as concluded after 
several tests on actual transformer designs, while other existing 
methods provided suboptimal solutions that are 3.1% to 5.8% 
more expensive than the optimal solution.  

 
Keywords –– Transformer design optimization (TDO), 

evolutionary computation, genetic algorithm (GA), finite 
element method (FEM), optimization. 
 

I.  INTRODUCTION 
 
 The aim of transformer design is to optimize an 
objective function subject to constraints imposed by 
international standards and transformer specifications. In the 
bibliography of transformer design, several objective 
functions are optimized [1], [2]: 

1. Minimization of transformer manufacturing cost 
[3], [4]. 

2. Minimization of total owning cost [5], [6]. 

3. Minimization of transformer active part cost [7], 
[8]. 

4. Minimization of active part mass [9]. 

5. Maximization of transformer apparent power [9], 
[10]. 

 Among the above-mentioned objective functions, the 
most commonly used functions are [1]: 

1. The transformer manufacturing cost, i.e., the sum of 
materials cost plus the labor cost. This objective 
function is mainly used when designing 
transformers for industrial and commercial users, 

since most of these users do not evaluate losses 
when they purchase transformers [11]. One of the 
challenges of this objective function is that the 
transformer manufacturing cost depends on the cost 
of materials (copper, aluminum, steel, etc) that are 
stock exchange commodities with fluctuating 
prices on the world market. 

2. The transformer total owning cost, i.e., the sum of 
transformer purchase cost plus the cost of 
transformer losses. This objective function is 
mainly used when designing transformers for 
electric utilities, since utilities usually evaluate the 
cost of transformer losses when they purchase 
transformers [11], [12]. 

 
 The transformer design requires knowledge of 
electromagnetism, magnetic circuit analysis, electric circuit 
analysis, loss mechanisms, and heat transfer. The 
transformer design problem, because of its importance and 
complexity, has attracted the interest of many researchers 
[1]-[10]. There are two different methodologies for the 
solution of transformer design problem: a) the multiple 
design method and b) the mathematical programming 
method. The multiple design method, [4], [5], is a heuristic 
technique that assigns many alternative values to the design 
variables so as to generate a large number of alternative 
designs and finally to select the design that satisfies all the 
problem constraints with the optimum value of the objective 
function; however, this technique is not able to find the 
global optimum. The geometric programming method is the 
most representative mathematical programming method for 
the solution of transformer design problem [9], however, it 
has two drawbacks: (i) it requires the development of the 
mathematical model for each specific transformer type and 
configuration in advance, and (ii) because of the large 
number of coefficients in polynomial approximations, the 
geometric programming method is lacking flexibility and 
can not be easily combined with more general transformer 
performance verification or cost estimation algorithms. 
Recently, another mathematical programming method, more 
specifically a parallel mixed integer programming-finite 
element method (MIP-FEM) technique [8] has been 
proposed performing better than the heuristic method [4], 
however, MIP-FEM is very sensitive to the selection of the 
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value range of design variables, so MIP-FEM often fails to 
find the global optimum. 
 
 This paper proposes a new power transformer design 
methodology based on a novel recursive genetic algorithm-
finite element method (GA-FEM) technique. The proposed 
method successfully combines the optimization capabilities 
of an improved genetic algorithm as well as the accuracy 
and the computational speed of two particular finite element 
models that are adopted for the validation of the optimal 
design by computing the no-load loss and impedance. The 
five main contributions and features of the proposed 
improved genetic algorithm (GA) are: i) introduction of an 
innovative recursive GA with a novel external elitism 
strategy assuring that the solution at a current GA run is 
better or at least the same with the solution at the previous 
GA run, ii) incorporation of an internal elitism strategy 
assuring the copy of the best solution to the next GA 
generation, iii) incorporation of the optimal solution 
provided by MIP-FEM method [8] into the initial population 
of the initial GA run, which in combination with the external 
and internal elitism strategies assures that the proposed GA-
FEM will converge to a better or at least the same solution 
with the MIP-FEM method, iv) adoption of variable 
crossover and mutation rates resulting in improved GA 
search, and v) optimal configuration for the parameters of 
the improved GA. In this paper, the minimization of 
transformer manufacturing cost has been considered as 
transformer design objective, however, the proposed 
recursive GA-FEM method can be also applied for all other 
transformer design objective functions, e.g., the 
minimization of transformer total owning cost. Application 
results confirm that the proposed GA-FEM technique finds 
the global optimum solution to transformer design problem 
in very short time, while two other methods find suboptimal 
solutions. 
 

II.  PROBLEM FORMULATION 
 
 The objective of transformer design optimization (TDO) 
problem is to design the transformer so as to minimize the 
transformer manufacturing cost, i.e., the sum of materials 
cost plus labor cost, subject to constraints imposed by 
international standards and transformer user needs. These 
constraints are: 
 

1. Induced voltage constraint: it expresses the relation 
between the induced voltage in the primary 
winding and the magnetic induction. 

2. Turns ratio constraint: the turns ratio is equal to the 
voltage ratio. 

3. No-load loss (NLL) constraint: the designed NLL 
must be equal or smaller than a maximum NLL. 

4. Load loss (LL) constraint: the designed LL is 
required to be equal or smaller than a maximum 
LL. 

5. Total loss (i.e., NLL plus LL) constraint: the 
designed total loss must be equal or smaller than a 
maximum total loss. 

6. Impedance constraint: the designed impedance 
must be between a minimum and maximum 
impedance. 

7. Magnetic induction constraint: the designed 
magnetic induction is required to be smaller than a 
saturation magnetic induction (1.85 T). 

8. Heat transfer constraint: the total heat produced by 
the transformer total loss (i.e., NLL plus LL) must 
be equal or smaller than the total heat that can be 
carried away by the combined effects of 
conduction, convection, and radiation. 

9. Temperature rise constraint: the transformer 
temperature rise (due to NLL and LL) must be 
equal or smaller than a maximum temperature rise. 

10. Efficiency constraint: the transformer efficiency is 
required to be equal or greater than a minimum 
efficiency. 

11. No-load current constraint: the transformer no-load 
current is required to be equal or smaller than a 
maximum no-load current. 

12. Voltage regulation constraint: the transformer 
voltage regulation is required to be smaller than a 
maximum voltage regulation. 

13. Thickness of layer insulation constraint: the 
thickness of layer insulation must withstand the 
induced voltage test and the impulse voltage test. 
More specifically: a) the induced voltage must be 
smaller than a maximum induced voltage that the 
insulation can withstand, and b) the impulse 
voltage must be smaller than a maximum impulse 
voltage that the insulation can withstand. 

14. Tank dimensions constraints: a) the tank length 
must be equal or smaller than a maximum tank 
length, b) the tank width must be equal or smaller 
than a maximum tank width, and c) the tank height 
must be equal or smaller than a maximum tank 
height. 

 
 The detailed mathematical formulation of TDO can be 
found in Chapter 2 of [1]. Moreover, a design example of an 
actual commercial transformer is worked out throughout 
Chapter 2 of [1] showing all the calculations that are needed 
to design a transformer. 
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 The TDO is a complex constrained mixed-integer non-
linear programming problem. The TDO problem is further 
complicated by the fact that the objective function (i.e., the 
manufacturing cost) is discontinuous [5]. 
 

III.  METHODOLOGY 
 
A.  Evolutionary Computation 
 
 Evolutionary computation techniques and particularly 
genetic algorithms (GAs) are computational-intelligence-
based optimization methods. They are used in several 
scientific fields, mainly in hard, large-scale optimization 
problems, where other classical analytical optimization 
techniques may prove inadequate. In the power engineering 
area, such problems include operation optimization (unit 
commitment, economic dispatch, optimal power flow, 
optimal allocation of reactive resources), parameter 
estimation, etc. 
 
B.  Genetic Algorithm 
 
 Genetic algorithms (GAs) are powerful optimization 
methods inspired by natural genetics and biological 
evolution. Their main advantages are: 

1. GAs explore several areas of the search space 
simultaneously, reducing the probability of being 
trapped in local optimum. 

2. GAs do not require any prior knowledge, space 
limitations, or special properties of the function to 
be optimized, such as smoothness, convexity, 
unimodality, or existence of derivatives [16]. 

 
C.  Finite Element Models 
 
 The finite element (FE) method is a powerful tool for 
the analysis and design of power transformers. In particular 
for the TDO problem of wound core type transformers, it is 
proposed to use two FE models, the first to compute the 
transformer no-load loss (NLL) and the second to evaluate 
the transformer impedance. In particular, a permeability 
tensor FE model is adopted for the computation of the NLL, 
since this model accurately represents the core material and 
the geometry of wound cores [13]. Moreover, an efficient 
FE model with detailed representation of winding geometry 
and cooling ducts is adopted for impedance evaluation [14]. 
Both FE models are based on a particular magnetic scalar 
potential formulation, [15], which is advantageous in terms 
of computational speed in comparison to FEM based on 
magnetic vector potential, as there is only one unknown at 
each node of the FE mesh. The accuracy and the 
computational speed are the main advantages of the above 
two FE models that make them ideal for the solution of the 
TDO problem. 
 

D.  Improved Genetic Algorithm for TDO 
 
 This paper introduces an improved GA for the solution 
of the TDO problem. This Section presents the 
contributions, features, and optimal parameter settings of the 
improved GA. 
 
 Since the GA is a stochastic optimization method, in 
general, it converges to different solution each time the GA 
is executed. That is why this paper proposes to implement a 
novel recursive GA approach, i.e., to run N times the GA 
and to introduce an external elitism strategy that copies the 
best solution found at the end of each GA run to the initial 
population of the next GA run. This innovative external 
elitism strategy assures that after the completion of each GA 
run, a solution is provided that is better or at least the same 
with the solution of the previous GA run. As will be shown 
later in this paper, after 7 to 10 GA runs, the global optimum 
is reached for the TDO problem. 
 
 An internal elitism strategy is also adopted, i.e., the best 
solution of every generation is copied to the next generation 
so that the possibility of its destruction through a genetic 
operator is eliminated. 
  
 The initial population of candidate solutions is created 
randomly. However, in the initial population of the initial 
GA run, the worst solution (i.e., the one with the maximum 
manufacturing cost) is substituted by the solution that is 
computed by the MIP-FEM method proposed in [8]. The 
incorporation of the MIP-FEM solution into the initial 
population of the initial GA run in combination with the 
external and internal elitism strategies assures that the 
proposed method will converge to a better or at least the 
same solution with MIP-FEM method. 
 
 In order to improve the GA search by assuring a good 
exploration at the beginning of evolution, and more and 
more exploitation capability while optimization goes on, 
variable crossover and mutation rates were tested. After 
enough experimentation, it was found that the best results 
were obtained with the following variable crossover and 
mutation probabilities: 
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where Pck is the crossover probability at generation k, Pmk is 
the mutation probability at generation k, and Ng is the 
number of generations. 
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 The first column of Table 1 presents the seven design 
variables that have been used for the solution of the TDO 
problem by the proposed GA. In Table 1 and throughout this 
paper, LV stands for low voltage and HV stands for high 
voltage. The fifth column of Table 1 shows that the first five 
design variables are of integer type, while the rest two 
design variables are of real type. The fourth column of Table 
1 shows the range of possible values that each design 
variable can take. This range of possible values has been 
determined from a large database of actual transformer 
designs with the following main characteristics: three-phase, 
oil-immersed, wound core distribution transformers from 25 
kVA up to 2000 kVA, with voltages up to 36 kV. Binary 
coding is used for chromosome representation. The last 
column of Table 1 presents the number of bits used for each 
design variable. As can be seen from the last row of Table 1, 
the GA chromosome has 61 bits. 
 
 After trial and error, it was found that a population size 
of 40 chromosomes and a number of 30 generations provide 
very good results for TDO. 
 
 Among the four different selection schemes tested, i.e., 
roulette wheel, tournament, deterministic sampling, and 
stochastic remainder sampling [16], the tournament 
selection scheme produced the best results and convergence 
for TDO. 
 
 

TABLE I 
DETERMINATION OF NUMBER OF BITS OF GA CHROMOSOME 

 
Design 
variable Symbol Unit Possible values Type Bits 

Number of 
LV turns x1 - 8 ≤ x1 ≤ 1000 Integer 10 

Magnetic 
material type x2 - 1 ≤ x2 ≤ 12 Integer 4 

Magnetic 
induction x3 Gauss 10000 ≤ x3 ≤ 18500 Integer 15 

Width of 
core leg x4 mm 80 ≤ x4 ≤ 500 Integer 9 

Core 
window 
height 

x5 mm 80 ≤ x5 ≤ 500 Integer 9 

LV current 
density x6 A/mm2 1.5 ≤ x6 ≤ 5.5 Real 7 

HV current 
density x7 A/mm2 1.5 ≤ x7 ≤ 5.5 Real 7 

 Number of bits of GA chromosome 61 

 
 
 
 
 

 
Fig. 1.  Flowchart of the proposed method for TDO problem. 

 
 
E.  Overview of the Proposed Method 
 
 The flowchart of the proposed optimization model for 
the solution of TDO problem, shown in Fig. 1, is composed 
of two submodels: 
 

1. MIP-FEM submodel. Initially, a MIP-FEM 
deterministic optimization method, [8], is used to 
solve the TDO problem. Let S0 be the solution 
provided by that method. 

2. Recursive GA-FEM submodel (N GA-FEM runs). 
After the execution of MIP-FEM submodel, N runs 
of the proposed recursive GA-FEM submodel are 
executed. Each run of GA-FEM submodel requires 
two internal runs: 

a. GA run. The recursive GA based 
optimization model is executed to solve 
the TDO problem. The solution S0 
provided by the MIP-FEM submodel is 
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included in the initial population of the 
initial GA run. In all the other GA runs, 
the best solution Si provided by the 
previous GA-FEM run is included at the 
initial population of the next GA run. This 
approach assures that the solution Si is 
better or at least the same with the solution 
Si-1. 

b. FEM run. The two FE models are used for 
the computation of transformer NLL and 
impedance (unlike the analytical formulas 
used in the GA run) in order to provide 
more accurate results and better 
convergence to the optimal solution. 

 
IV.  RESULTS 

 
A.  Design of a 1600 kVA Transformer 

 
 The proposed GA-FEM method has been used for the 
solution of the TDO problem of an actual 1600 kVA 
transformer design with the following main specifications: 
rated frequency 50 Hz, rated HV 20 kV, rated LV 0.4 kV, 
prescribed NLL 1700 W, prescribed LL 20000 W, 
prescribed impedance 6%. The NLL, LL, and impedance 
tolerances are according to IEC 60076-1 international 
standard, i.e., the maximum NLL is 1955 W, the maximum 
LL is 23000 W, the maximum total loss is 23870 W, the 
minimum impedance is 5.4%, and the maximum impedance 
is 6.6%. Table 2 compares the results of the proposed 
method with a heuristic [4] and a MIP-FEM method [8]. As 
can be seen from Table 2, the three techniques converged to 
three different solutions. In particular, the proposed 
recursive GA-FEM method, after 7 GA-FEM runs that are 
implemented into 3.42 minutes, provides the best result, 
since it converges to the global minimum manufacturing 
cost (MC) of $23271. 
Fig. 2 compares the minimum manufacturing cost computed 
by the above three techniques for the solution of the 1600 
kVA TDO problem. Since the heuristic and the MIP-FEM 
are both deterministic optimization techniques, they always 
converge to the same minimum MC, i.e., $24814 for the 
heuristic and $24446 for the MIP-FEM. On the other hand, 
the proposed recursive GA-FEM, because of its special 
design, manages to progressively reduce the MC, as the 
number of GA-FEM algorithm runs increases. In particular, 
after 7 GA-FEM runs, the global minimum MC is achieved, 
which is 4.8% cheaper than the MC computed by a MIP-
FEM method [8] and 6.2% cheaper than the MC computed 
by a heuristic method [4]. As can be seen from Fig. 2, after 
the 7th GA-FEM run, the MC is not further decreased, which 
means that 7 GA-FEM runs are enough to obtain the global 
optimum solution to TDO problem. 
 
 
 

TABLE II 
COMPARISON OF PROPOSED GA-FEM METHOD WITH TWO EXISTING 
TRANSFORMER DESIGN METHODS FOR AN 1600 KVA TRANSFORMER 

 
Parameter Heuristic MIP-FEM GA-FEM 

Number of LV turns 10 10 11 

Magnetic material type 1 (i.e., HiB) 2 (i.e., M4) 1 (HiB) 

Magnetic induction (Gauss) 16012 16991 18000 

Width of core leg (mm) 290 322 325 

Core window height (mm) 338 322 354 

LV current density (A/mm2) 4.3 4.6 4.3 

HV current density (A/mm2) 4.0 3.8 4.6 

No-load loss (W) 1581 1952 1791 

Load loss (W) 19035 18767 21151 

Total loss (W) 20616 20719 22942 

Impedance (%) 5.89 6.41 6.20 

Manufacturing cost ($) 24814 24446 23271 

Number of algorithm runs 1 1 7 

Total execution time (minutes) 0.45 0.79 3.42 
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Fig. 2.  Comparative results for an 1600 kVA transformer design. 

 
 
  
 
B.  Generalization 

 
 The proposed GA-FEM method has been tested on 200 
actual transformer designs, of 8 power ratings and various 
loss categories and voltage ratings. As can be seen from 
Table 3, the proposed GA-FEM method finds the global 
optimum solution that is, on average, a) 5.8% cheaper than 
the solution of a heuristic technique [4], and b) 3.1% 
cheaper than the solution of a MIP-FEM method [8]. 
 
 
 
 

7th International Conference on Electrical and Electronics Engineering Research (CIIIEE 2010) 
November 10-12, Aguascalientes, Ags. Mexico. 
www.ciiiee.ita.mx 230 of 308

ISBN: 978-607-95060-3-2 
Supported by  the IEEE Aguascalientes Section and the Instituto Tecnologico de Aguascalientes



 

TABLE III 
COMPARISON OF AVERAGE MANUFACTURING COST SAVING (%) OF 

PROPOSED GA-FEM VERSUS HEURISTIC [4] AND MIP-FEM [8] 

Rated power 
(kVA) 

Number of 
designs 

Cost saving of Proposed 
versus Heuristic 

Cost saving of Proposed 
versus MIP-FEM 

100 25 5.3 1.8 

160 25 4.9 2.6 

250 25 8.0 4.4 

400 25 6.5 3.0 

630 25 6.0 2.8 

800 25 5.9 2.0 

1000 25 3.7 3.2 

1600 25 6.3 4.9 

Average  5.8 3.1 

 
 

V.  CONCLUSION 
 
 This paper has proposed an innovative recursive GA-
FEM method for the solution of the complex constrained 
mixed-integer non-linear TDO problem. When tested on 200 
actual transformer designs, the proposed GA-FEM 
technique converged to the global optimum, thus GA-FEM 
provides significant manufacturing cost savings ranging 
from 3.1% to 5.8%, in comparison with two deterministic 
optimization methods that converged to local optimum 
solutions. The proposed recursive GA approach can be also 
very useful for the solution of other optimization problems 
in electric machines and power systems. 
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